Posts

Figure 5. Iron works in the Georg Fischer Iron Library

“Get thee to a Nunnery” : Finding the History of Metallurgy in a Monastery

Although the history of Canadian metallurgy is of national significance, our collection in this area is rather small. Before, I could decide what to collect, I needed to gain a better understanding of the subject. Therefore in June 2015, I travelled to the Georg Fischer Iron Library in the small town of Schlatt, Switzerland where I spent three weeks as a Scholar-in-Residence. I researched the history of metallurgy, and the technology transfer between Europe and Canada.

Figure 1. The Klostergut Paradies nunnery

Figure 1. The Klostergut Paradies nunnery near the town of Schlatt, Switzerland.

The Iron Library holds the world’s largest collection of books on mining and metallurgy. It is located in Klostergut Paradies, an old nunnery, established by Poor Clares in 1253 (Figures 1). In 1918 Georg Fischer AG (GF), a large manufacturer of iron, steel, and plastics purchased the monastery with its agricultural lands to grow food for the company’s workers. Inside, Fischer discovered a large library of books related to mining and metallurgy, and rather than dismount it, the company decided to invest in the collection. Today, the Iron Library’s holdings are unmatched by any others in the world (Figure 2). Surrounded by towns with rich metallurgical history, the Iron Library provides a perfect environment to study the field.

Figure 2. The Iron Library Rare Books Collection

Figure 2. The Iron Library Rare Books Collection

I had an ambitious research plan for my three-week stay. I started by consulting monographs related to the history of metallurgy in general, and the European history of metallurgy. This allowed me to place developments in Canada in a broader cultural and technological context. Next, I reviewed Georg Fischer’s archival resources to identify links with Canadian companies. Indeed the archival collection proved very interesting. It contained files on Fischer turbines supplied for Alcan’s Kitimat-Kemano projects (Figure 3), Hydro-Quebec’s Bersimis stations, and Ontario Hydro’s Sir Adam Beck No. 2. I was surprised to discover that in 1956, Professor Gerard Letendre, who according to Canadian scholarship advised Premier Duplessis against investing in steel industry in Quebec, solicited GF’s capital for a metallurgical research centre in Canada. The documents also show that, when in 1956 Gordon MacMillan, Vice-President of the Canadian Car Company asked for a tour of GF’s plants, the head of GF bluntly refused suggesting in a less than polite manner that he felt: “inclined to consider the contemplated visit devoid of the benefit (…) and think it better for [MacMillan] to cancel your coming to Schaffhausen.”

 

Figure 3. A Pelton turbine for Alcan’s Kitimat-Kemano project in British Columbia

Figure 3. A Pelton turbine for Alcan’s Kitimat-Kemano project in British Columbia

Lastly, I consulted unique manuscripts and publications dating from the fifteenth to the eighteen century containing drawings, engravings, and woodcuts, such as Jean François Morand’s L’art d’exploiter les mines and Jacob Leupold’s Theatrum Machinarum. Images that I found challenged my assumptions on the roles of women in mining and metallurgy (Figure 4), a subject that I now need to study in more detail.

Figure 4. (A) Women working in a coal mine, 1700s (B) An ivory miniature showing women forging Damascus steel

Figure 4. (A) Women working in a coal mine, 1700s (B) An ivory miniature showing women forging Damascus steel

 

I toured a GF’s iron plant in Singen, Germany and a plastics plant in Schaffhausen, Switzerland; met with GF staff and visiting scholars from as far as Nepal and Japan. Yet, in its serendipitous way, the research at the Iron Library revealed an unexpected story of ‘collecting and connecting.’ The library contained a collection of polonica, metallurgy literature published in Poland between the 1960s and the early 1980s. How did the Iron Library come to acquire such a collection? As archival correspondence revealed, in the early 1960s the Library approached the Mining and Metallurgy Academy in Krakow asking for help in acquiring publications produced in then communist Poland, which were not available abroad. One of the professors, Dr. Jerzy Piaskowski, who had a private collection on history of metallurgy, enthusiastically agreed to supply the books and magazines in exchange for material published in the Western Europe.

… in its serendipitous way, the research at the Iron Library revealed an unexpected story of ‘collecting and connecting’.

At the time, as Piaskowski explained in one of his letters, this was the only way that books from the West could make it to a scholar from the Eastern Block. Dr. Piaskowski produced handwritten bibliographies, which he mailed to the Iron Library. The Iron Library staff would make a selection and mail it back to Dr. Piaskowski. He then purchased the books and sent them to the Library with a list of publications that he wished to receive in return, of the value equivalent to his shipment. This cooperation lasted for almost two decades. At one point, in the mid-1960s, the Library invited Dr. Piaskowski for a visit. He diplomatically ̶ as not to offend any potential censors and jeopardize his future contacts with the Library ̶ replied that it was impossible for him to travel outside of Poland. As the staff at the Iron Library changed and the collecting policies become more practical in the early 1980s, the new Librarian suggested in one of the last letters to Dr. Piaskowski that books in Polish were not useful for the Library’s clientele. “Perhaps, now there are no people who can read my papers”- replied Dr. Piaskowski – “but there will be in future.” I wish, I could tell him that he was right.

Figure 5. Iron works in the Georg Fischer Iron Library

Figure 5. Iron works in the Georg Fischer Iron Library

Resources:

Iron Library Online Catalogue

Acknowledgements:

I would like to thank the Georg Fischer Iron Library Foundation for their generous support of the Scholar-in-Residence programme. Many thanks to the wonderful library staff Franziska, Florian, and Uta, for making my stay truly special.

philco dial_SW

Unstable Plastics: Preservation Challenges in Museum Collections

Plastics are so much a part of our lives that we don’t even think about them except when we check for the recyclable symbol. Plastics in museums (Figure 1), however, deserve much more attention as they present significant and constant collecting and preservation challenges.

Figure 1. The Temperature Control (TC) room in one of the Canada Science and Technology Museums Corporation storage facilities provides constant and cool storage conditions for many small objects made of early plastics.

Figure 1. The Temperature Control (TC) room in one of the Canada Science and Technology Museums Corporation storage facilities provides constant and cool storage conditions for many small objects made of early plastics.

The first synthetic plastic was patented in 1865, meaning that plastics are 150 years old this year. We collect plastic artifacts not as examples of the plastics themselves, but as part of a collection of technological and social history objects significant to Canadians (Figure 2). One of the earliest plastics was rubber, and it is not hard to imagine the amount of rubber in a collection of technological history….. tires, tubes, gaskets, seals, floor mats, fabrics, wires, elastics….everywhere.

Figure 1. (A) Embrittlement caused by degraded cellulose acetate is clearly visible in this car knob from a 1948 Chrysler Town and Country car. (B) The degraded cellulose nitrate is visible on the mouthpiece of this tobacco pipe. (C) Degraded ebonite on a 19th century stethoscope. (D) Signs of degradation due to exposure to oxygen and light, on the rubber of this WW1 gas mask.

Figure 2. (A) Embrittlement caused by degraded cellulose acetate is clearly visible in this car knob from a 1948 Chrysler Town and Country car. (B) The degraded cellulose nitrate is visible on the mouthpiece of this tobacco pipe. (C) Degraded ebonite on a 19th century stethoscope. (D) Signs of degradation due to exposure to oxygen and light, on the rubber of this WW1 gas mask.

 

The preservation of plastics is a growing concern in the field of Conservation due to the instability of some types. There is much study being done in Europe, mostly related to plastic in works of art and decorative objects. PoPArt, the Preservation Of Plastic ARTefacts in museum collections is a good example. There is far less being done for plastics in collections of technology, which is worrying for us. The Canadian Association for Conservation of Cultural Property sponsored a workshop in 2010, that brought together some of Canada’s leading experts including Scott Williams and Julia Fenn. This workshop focused on plastics in the collection of the Canada Science and Technology Museum Corporation.

 

“The preservation of plastics is a growing concern in the field of Conservation due to the instability of some types”.

Why do we worry about plastics in our collection? Because we find them everywhere. They were arguably the material that most affected the electrification of the world: allowing for the production of cables (transatlantic cable 1854 to 1858, and again 1865-66), insulating materials, and moulded shapes for consumer products such as telephone receivers (Figure 3). In our transportation collection, we have plenty of rubber tires, and we also find plastic steering wheels, knobs, safety glass (which has a plastic layer sandwiched between glass), moulded dash and interior panels and fittings, and vinyl upholstery.   Aircraft contain a similar range of plastics materials; it being one of the great technological advancements between World War I and II that allowed for the huge innovations in aircraft construction between the Wars. From a design perspective, plastics, and the ability to mould complex shapes; permitted the creation of iconic decorative objects from the 20th Century, including radios, lamps, telephones, furniture and fashion accessories.

 

Figure 2. (A) The moulded shapes and colour effects of urea formaldehyde plastic are clearly visible on this Philco rotary dial. (B) A sample of an early marine telegraph cable, made of gutta percha, which is actually remarkably stable.

Figure 3. (A) The moulded shapes and colour effects of urea formaldehyde plastic are clearly visible on this Philco rotary dial. (B) A sample of an early marine telegraph cable, made of gutta percha, which is actually remarkably stable.

 

“Plastics are a fascinating class of material; and we owe a great deal to the early pioneers of chemistry,  whose achievements have allowed for the ubiquitous presence of this material in our lives today”.

 

There are some plastics that we know won’t last, such as rubber and PVC; but we do have strategies for prolonging their life expectancy. Some need to be stored in the dark, some in cold temperatures, and some in an oxygen-free environment. Some need all three. Private collectors should be aware of the type of plastic they have, so that they can care for it properly. Bakelite is one of the most stable plastics, and fortunately the majority of decorative items to be found at Antiques sales, are of this material.   Cellulose nitrate, on the other hand, also used to make decorative items; is inherently unstable.   Collectors should know this and take special care of it.

 

Figure 4.

Figure 4. Embrittlement

 

 

What does plastic deterioration look like? It can take the form of embrittlement (Figure 4), surface changes, stickiness, or a change of colour. Some (like cellulose nitrate) release an invisible gas which in the presence of moisture, can form acid on adjacent surfaces. This will cause organics to disintegrate, and metals to corrode. Cellulose nitrate buttons on an old gown, for instance, will eventually result in holes in the fabric, and corrosion of any metal decoration or button shanks. They should therefore be removed and stored separately, even if it breaks your heart to do so.

 

 

 

 

 

 

 

The Conservation and Collection Services Division is responsible for the long-term care, preservation, and housing of the National Collection for the Canada Science and Technology Museums Corporation.

 

 

 

 

Bottles

Dangerous Donations

One of my more favourite things we bring into the collection are chemical sets. We’ve had chemist’s laboratory containers, microscope slide preparation kits with dozens of vials and most recently, an 1890’s Robert Best Ede home chemistry set.

RB Ede’s Portable Laboratory before processing (2014.0029)

Robert Best Ede’s Portable Laboratory before processing (2014.0029)

 

It is remarkable to me that the materials and products in this kit were available to the average enthusiast, with no apparent warning as to their dangers and toxicity. Our kit includes samples of copper nitrates, potassium dichromate, calcium hypochlorite and of course, our frequent friend, mercury. As you can see, these chemicals are in their original round cardstock boxes, some of which are damaged or completely broken open. It is more worrying to me to see an empty box of barium nitrate and a nearby pile of powder, than it is for me to come across a beautifully intact box of arsenic. Without chemical analysis, I can only hypothesize that my pile of powder is the missing barium nitrate.

 

As the above photo of the kit shows, this kit was packed up by a generous donor. There are bits of Kleenex and other papers wrapped around some of the glassware. The donor did a good job and it appears that no new damage occurred during delivery. Other donors of chemical sets take great pride in donating their items to the museum and we are grateful. However, considering what we know about current Health & Safety practices, I sometimes worry whether the owners of sets like this understand precisely what they have in their possession. Do they know that labels cannot be trusted? The box labelled Cinnabar might give an impression of aromatic deliciousness, but in fact is toxic mercury sulphide. Do they know what to do if they spill their cobalt chloride on their hand, or inhale borax particles? My guess is that owners and collectors might not consult Material Safety Data Sheets (MSDS), nor re-package every bottle and box in a leak-proof, chemically resistant container, with appropriate WHMIS pictograms and labels. Fortunately for me, studying and making these chemical artifacts as safe as possible is one of my favourite conservation tasks.

 

Some RB Ede’s chemicals after packaging and labelling.

Some RB Ede’s chemicals after packaging and labeling.