1984.0716.001.cr 090

The War of the Agitators

I recently made the trip to Fergus, Ontario to conduct some research at the Wellington County Museum and Archives. I am working on a project about Canadian innovations in washing machines in the 1920s and 30s and looking specifically at agitators manufactured and designed by Beatty Bros Ltd. The company was founded in Fergus in 1874 and was based there until 1961. The archives in Fergus have an amazing collection of the papers, advertising campaigns, financial and miscellaneous company records of Beatty Bros. Ltd.

1992.1580 053

1920 Beatty washing machine (art. no. 1992.1580)

Upon my arrival I was struck by how beautiful the building was, well-kept and very modern. I was greeted by two of the archive’s staff, Kim and Elysia, both of whom were extremely helpful throughout the day I spent there.

I was looking for any documents, trade literature and advertising material relating to the invention of the agitator. Prior to my visit, some sources suggested Beatty Bros Ltd invented the agitator, while others stated that it was in fact Maytag’s invention and I wanted to clear that up. As it turns out, the agitator was invented by Maytag in 1922 but the patent didn’t hold up so every washing machine company in North America came up with their own version. The historical files in the Beatty Bros Fonds had a lot of documents on the subject including internal correspondence, ad campaigns and what appears to be an internal presentation on the agitators of the competition and how Beatty’s design compares. It was an incredible peek at what I now refer to as the ‘War of the Agitators’ in the 1920s and 30s.

1984.0716.001.cr 090

An agitator from a Beatty washing machine c 1930s (art. no. 1984.016)

Kim also served as the liaison between myself and the museum’s Curatorial Assistant, Amy Dunlop who, despite having 3 exhibits opening that very day generously found time to show me the museum’s Beatty Bros washing machine collection. She took me to the museum’s storage facility where we saw a collection of Beatty washing machines. I was so pleased to see a Beatty Red Star (a wooden tub, lever-operated machine in production from 1914 to the 1930s) intact, as well as a few other machines we don’t have in our own collection. Such a treat!

Beatty Bros instruments are a window into domestic culture and industry in Canada at a transformative time. Amy and I discussed working together in the future on a project involving our complimentary collections of artifacts, archival material and trade literature. My visit was a success through connecting artifacts, history and place. Our files will be greatly enhanced thanks to our colleagues at WCM&A.

BeattyDocs

Copies of documents found during my visit to the Wellington County Museum and Archives.

This is the kit ! Donated to the Museum by Parks Canada in March 2013.
Photo: CSTMC/T.Alfoldi

In Search of George Klein’s Snow Study Kit

My research on the history of avalanche studies in Canada started in December 2012 when I made several enquiries as to the possible location of a snow study kit developed by George Klein.

Klein Snow Study Kit, 1947-2013
Manufacturer: National Research Council Canada, Division of Building Research, Source: Parks Canada, Mount Revelstoke and Glacier National Parks
Location: Rogers Pass National Historic Site of Canada, B.C.
Artifact no.: 2013.0059.001-.010

A pioneer of the Alouette satellite program, Klein is regarded as one of Canada’s most prolific inventors. He developed the box kit pictured below as well as published Method of Measuring the Significant Characteristics of a Snow-Cover (NRC, MM-192) in the mid 1940’s. But where was the kit? How do I set out looking for it? Would I get lucky enough to find it?

View a 1958 video of the Klein snow kit in use in Rogers Pass, B.C.

photo box only

The complete set of instruments.
Weighing 16 lbs, the set included snow sample cutters, a beam balance, two snow hardness gauges, ruler, cup, magnifying glass, spatula, and thermometers.
Photo: Reproduced with the permission of the National Research Council Canada

Fuelled by curiosity, and knowing of the possible links to avalanche research in Canada, enquiries and connections were made. I had several discussions with Richard Bourgeois-Doyle of the NRC in Ottawa, also George Klein’s biographer, and people from the Centre d’avalanche de la Haute-Gaspésie in Québec, the Canadian Avalanche Association in Revelstoke, Parks Canada, and with the ASARC program at the University of Calgary.

Perseverance paid off! It was in January 2013, with the invaluable help of Dr. John Woods, a retired Parks Canada naturalist, and an enthusiastic Phd student from the Applied Snow and Avalanche Research (ASARC) program at the University of Calgary. They located a snow study kit. This one contained some of Klein’s original instruments, which meant it had been in use for over sixty years. The well weathered instruments stood the test of time, and were still in use at the Mount Fidelity research station in Glacier National Park of Canada, B.C.

With a gracious invitation by Jacolyn Daniluck, a Parcs Canada Communications Officer, I travelled to Rogers Pass National Historic Site of Canada in March 2013 (on this and other related business). It was there I met Jeff Goodrich, an expert in avalanche operations, who would donate a second kit to the Museum. This one, not in use since 2005 had four of Klein’s original instruments: a 500 gram beam balance stamped NRC/DBR, a snow sampling tool, bowl, and a snow density gauge.

 

Donated to the Museum by Parks Canada in March 2013. Photo: CSTMC/T.Alfoldi

The three instruments pictured, part of one of Klein’s original snow science kits, were donated by Parks Canada in March 2013. Used in the 1950’s by Noel Gardner and NRC avalanche pioneer Peter Schaerer during the construction of the Trans-Canada highway through Rogers Pass, the instruments became part of this red kit and used thereafter by Parks Canada in snow research and avalanche control until very recently.

These instruments, developed by Klein for the classification of snow-ground covers were originally intended to advance his research in the development of snow landing gear for aircraft. His research however would also eventually contribute to the foundation of an international standard for snow classification as well as to avalanche studies during the planning and construction of the Trans-Canada Highway.

Snow Study Plot, Mount Fidelity, Parks Canada, 1965, Glacier National Parc, B.C.
Fred Schleiss is holding a snow crystal identification card and looking at the crystal type. Seen hooked on the handle of the shovel, the Klein beam balance and small bucket are some of the basic instruments used to determine snow density of various layers within this snow pit.
Photo: Reproduced with the permission of Parks Canada.

Klein’s snow instruments made their way to Rogers Pass where they were used by Canadian avalanche pioneers Noel Gardner and Peter Schaerer during the planning and construction phases of the Trans-Canada Highway in the mid to late 1950’s, and used almost to this day in the Parks Canada avalanche control program.

Snow Study Plot, Rogers Pass National Historic Site of Canada, B.C.

Many thanks to Johan Schleiss who gave me a very “cool” tour of their snow study plot in Rogers Pass National Historic Site of Canada, B.C. Photo by author, March 2013

 

Click here to view VIDEO: Snowplow on the Trans-Canada Highway

Snowplow on the Trans-Canada Highway

This video was taken from the Bostok Creek parking lot at the foot of Mt. Fidelity, in Glacier National Park of Canada. Located at an elevation of 1,900m, the Mt. Fidelity Research Station monitors weather and conducts snowpack analysis for avalanche control. With an average annual snowfall of about 14m (42 feet), it is the snowiest place in Canada and ranked third snowiest place on Earth.

Digging Deeper:

Land of Thundering Snow
http://www.landofthunderingsnow.ca/index-eng.php” rel=”nofollow”>www.landofthunderingsnow.ca/index-eng.php

Backcountry Avalanche Information

http://www.pc.gc.ca/pn-np/bc/glacier/visit/a9.aspx

Canadian Science and Engineering Hall of Fame, Canada Science and Technology Museum, Ottawa

http://cstmuseum.techno-science.ca/en/hall-of-fame/hall-of-fame-george-j-klein.php

Glacier National Park Canada

http://www.pc.gc.ca/pn-np/bc/glacier/index.aspx

Rogers Pass National Historic Site of Canada

http://www.pc.gc.ca/lhn-nhs/bc/rogers/index.aspx

 

Acknowledgements:

Many thanks to Parks Canada (Jeff Goodrich, Jacolyn Daniluck, and Johan Schleiss) for donating the Klein kit and other artifacts to the Museum. To Dr. John Woods, Wildvoices Consulting and Mike Conlan, ASARC Program, University of Calgary for finding Klein instruments still in use and pointing me in the right direction. To the National Research Council of Canada, who started the whole thing in the first place and for the use of the photo of the original Klein snow study kit, and to Dick Bourgeois-Doyle for answering the many questions I had on George Klein.

Sources:

Bourgeois-Doyle, R., George Klein: The Great Inventor, National Research Council Press, Ottawa, Canada, 1994.

Klein, G.J., Method of Measuring the Significant Characteristics of a Snow-Cover, Report No. MM-192, National Research Council of Canada, Ottawa, November 1946.

Klein, G.J., Canadian Survey of Physical Characteristics of Snow-Covers, For presentation at the Oslo Conference of the International Union of Geodesy and Geophysics, National Research Council of Canada, Ottawa, June 1948.

Proceedings of 1947 Conference on Snow and Ice, Associate Committee on Soil and Snow Mechanics. Technical Memorandum No. 10 of the Associate Committee on Soil and Snow Mechanics, NRC, Ottawa, October 1947.

The International Classification for Snow, Issued by the International Association of Hydrology. Published as Technical Memorandum No. 31 by the Associate Committee on Soil and Snow Mechanics. National Research Council of Canada, Ottawa, August 1954

CSTMC / M.Labrecque, 2014

The Manitoba II , Physics Department, University of Manitoba

Field Notes: Mass Spectrometry at the University of Manitoba

On the 1st and 2nd of October, I visited the Physics Department at the University of Manitoba to learn more about their program in mass spectrometry. It has been over one hundred years since British scientists developed methods to deflect ions (charged particles) of different mass in order to study the constituents of materials. Scientists at U of M have since become masters of these effects, making significant contributions in two areas of mass spectrometry – the determination of fundamental mass units, and the analysis of large biological molecules. Researchers, engineers and instrument makers around the world use U of M findings and technologies in physics, chemistry, health sciences and industry.

Why Winnipeg? I found answers in some of the original instruments, and of course, the people who made, developed and used them.

The “Manitoba II” is a central instrument in Mass Spec studies at U of M. It is a room-sized, high-resolution mass spectrometer that has set international standards for determining atomic masses. Ions are deflected and detected after racing through a curved one-meter radius electromagnetic track. Physicist R.C. Barber designed the Manitoba II with many small, precision parts built in the departmental machine shop headed up by Bob Batten, a British-trained technician. It replaced the “Manitoba I” that came to U of M in the early 1960s from McMaster University with H.E. Duckworth.

The Manitoba II , Physics Department, University of Manitoba

The Manitoba II , Physics Department, University of Manitoba

The room and instrument document over forty years of toil and triumph – there are shelves of log books, abandoned parts, tools, signs, layers of black board sessions, trade literature, texts and aged off-prints. The instrument shows countless modifications, inscriptions, warnings, heat streaks, and tape – lots of tape. “It really is built from scratch,” says Physics Chair, Kumar Sharma who was a student of Barber’s in the early 1970s when the instrument was built. The Manitoba team constructed the parts for the electrostatic analyser (ESA)  in collaboration with Canadian Westinghouse in Hamilton. The stainless steel for the case was cut and bent there with the actual welding done by a workshop in King Township, Ontario.

Sharma remembers the Manitoba II being covered in black welding soot when it first arrived in the lab. They had to electro polish it to prevent unwanted contaminants from entering the high-vacuum chamber. “It was the best vacuum I had ever worked with,” recalls Sharma, “made possible by the homemade metal to metal seals.” The vacuum chamber had to be machined, annealed with some surfaces ground flat.

Manitoba II laboratory

Many careers such as Sharma’s have been built (and shaped) around this instrument. Barber had trained under H.E Duckworth, who had trained in Chicago under A.J, Dempster (of Toronto bakery fame). Sharma is now working on the next generation of MS instrument at the Canadian Penning Trap at Argonne National Laboratory outside Chicago.

In the late 1970s ion deflection turned into straight flight when Ken Standing and his post doc, Brian Chait, developed a way to analyse big organic molecules using Time of Flight (TOF) mass spectrometry. TOF had been invented earlier, but Standing and Chait developed a method for accurately timing the flight of the big molecules produced by ion bombardment. Werner Ens joined Standing as a PhD student just as this instrument began to work, and with contributions from many others, there followed a succession of advances that lead to major patents and spin-offs in industry. Their work is now a fundamental part of the emerging field of proteomics, the study of protein quantity and structure in life forms. Ens joined the faculty in 1987, and in 2010, Standing and Ens won the Manning Innovation award for their achievements.

Standing attributes his success to good students. “I tend to leave my students alone,” he says. In fact, Ens recalls that his first job was to re-build a filament (for a surface ionization ion source) from scratch. On one of his first days in the lab he burned out a filament that Chait had spent weeks preparing and testing. “I was about as green as graduate student could be,” he recalls. Standing came by this pedagogical approach honestly; In the early 1950s his supervisor, Princeton physicist Rubby Sherr went on leave and left him alone in one of the best nuclear labs in the world. “I was lucky to think of something to do, and I did it.”

The first U of Manitoba TOF instrument from 1979. “It’s just a pipe” says Ken Standing in jest. Photo: Storage room, Physics Department, University of Manitoba.

The beauty of collecting physics is that the most abstract of variables such as time and space become concrete, local and sensory. In the TOF labs, I surveyed a vast landscape of electronic equipment that transformed molecular flight times into accessible digitized data. In the early 1980s Ens had spent much energy building software to interface with time-to-digital converters – a pivotal part of their innovations in precision timing.

Ken Standing with TOF2

Ken Standing with TOF2 representing key developments in TOF mass spectrometry at the University of Manitoba.

Precise vacuum production is basic to the TOF enterprise. When visiting the laboratory, one experiences a constant drone of vacuum pumps for precisely managing experimental vacuum conditions. Ken Standing took me into a backroom of their laboratory to see the original TOF 1979 instrument. I could barely hear (record) him through the clamour of vacuum pumps, each connected to different machines in the lab.

TOF 3 Mass Spectrometer, built at the University of Manitoba, Physics Department c. 1990.

Part of TOF 3 Mass Spectrometer, built at the University of Manitoba, Physics Department c. 1994. The TOF3 combined three innovations – orthogonal injection, MALDI techniques and collisional cooling.

Many factors contributed to the development of Mass Spec at the U of M – post-WWII research in several areas at the department ( e.g. nuclear) drew top faculty and students (local and international); there were good instrument makers – “at one time, you heard many British accents in the machine shops,” Standing recalled; there were connections to the Chicago physics scene through Duckworth and Dempster; there were pivotal Russian (Soviet) influences brought in by Standing as a result of a fortuitous tour he made in preparation for a possible conference; and there was an entrepreneurial leaning that opened the door to successful commercial collaborations (AB SCIEX)

And, there were local questions deriving from agriculture. In the mid 1970s Standing and Chait used the new U of M cyclotron to analyse protein levels in kernels of grain. “They were looking for new applications for the cyclotron,” Ens said. “That’s what gave them the connection to the biological world, and they began to see that maybe mass spectrometry was a better way to look for those proteins.”

References:

Connor, R. D. and University of Manitoba. Dept. of Physics and Astronomy. (2004). The expanding world of physics at Manitoba: a hundred years of progress: Department of Physics and Astronomy, University of Manitoba. Winnipeg, Dept. of Physics and Astronomy, University of Manitoba.

Hughes, Jeff. “Making Isotopes Matter: Francis Aston and the Mass-Spectrograph,” Dynamis: Acta Hispanica ad Medicinae Scientiatumque Historiam Illustrandam 29, (2009), 131–166

Nier, Keith A. “A History of the Mass Spectrometer,” Instruments of Science: An Historical Encyclopedia. Robert Bud and Deborah Jean Warner, editors. 1998. New York & London: The Science Museum, London, and The National Museum of American History, Smithsonian Institution, in association with Garland Publishing, Inc. Pages 552-56.

Sharma, K. S. (2013). “Mass spectrometry—The early years.” International Journal of Mass Spectrometry 349–350(0): 3-8.

Standing, K. G. (2000). “Timing the flight of biomolecules: a personal perspective.” International Journal of Mass Spectrometry 200(1): 597-610.