IMG_00000151

Collecting an Aircraft and a Community

From the earliest bush planes to post-WWII aircraft, Canada has a long tradition of aerial photographic surveying and exploration. In the 1970s, the newly formed CCRS (Canadian Centre for Remote Sensing) developed a pioneering remote sensing program, which used both optical and radar-based technologies for imaging the earth. Through the RADARSAT program, Canadians took this enterprise into space.

Recently, the curator of Aviation, Renald Fortier and I proposed the acquisition of an aircraft used for some of the earliest remote sensing research in Canada. Many logistical and financial challenges lie ahead, but research into the potential acquisition continues. From 1974 to 2012, the Convair 580 was the experimental platform for radar remote sensing. It performed research for application development in forestry, agriculture, geology, hydrology, oceanography, ice studies, environmental protection, cartography, oil and gas operations, mineral exploration, and arctic navigation.

35-2007-12-01DSC_4085p-C-GRSC

Photo: The present location of the Convair 580 at the former hangar for the Geological Survey of Canada now owned by Environment Canada. The CV 580 has a colourful biography – from Johnson and Johnson executive transport in the 1950s to rugged scientific vessel for the Canadian government from 1974-2012. Photo from www.ottawaairportwatch.ca

In the process of researching this proposal, we were struck by the wide range of people, institutions, disciplines, and regions touched and shaped by this aircraft. Many people heard about our proposal and wrote personal, emotional testimonials about their experience with CV 580. As the research progressed, and we heard from people around Canada and the world, we realized we were collecting an entire community, not just an aircraft and its instruments.

Photo: CV 580 as ambassador. The Convair 580 on a 1981 mission with the European Space Agency. The CV 580 flew in missions in over 70 countries and contributed to earth and space-based remote sensing programs in several countries.

Photo: CV 580 as ambassador. The Convair 580 on a 1981 mission to Europe with the European Space Agency. Over the years, the CV 580 flew in missions in over 70 countries and contributed to earth and space-based remote sensing programs all over the world.

Aircraft, instruments, people and places

The CV 580 represents a fascinating integration of the social and material dimensions of scientific practice. The inside of the aircraft could be a vessel from any scientific voyage in history.

IMG_00000195

Photo: Inside the CV 580. The CCRS and industry partners such as MDA custom built almost all the instrumentation for the aircraft.

There were specialized instruments, skills and communications at work, with many changes dependent on the mission, and/or the introduction of new technologies over the years. A few things were fairly constant. There was a station for real-time processing and radar control, a station for monitoring the imagery and many associated recording systems, and stations for flight scientist and mission manager. The crew managed their instruments and stations while coordinating and communicating with colleagues through the vibrations and noise of the aircraft. Research scientist Bob Hawkins flew on many missions with CV 580 since 1978. He recalled the unique social conditions that developed on the aircraft:

“There is camaraderie like I suppose happens in a military unit as everyone focuses on making his part of the task fit and integrate with the rest of the crew.  We are each aware of one another’s foibles yet confident in the ability of the team to come through..” (Personal correspondence, March 2014)

Photo: Doug Percy at the real-time processing station, c. 1990s.

Photo: Doug Percy at the monitoring and recording station, c. 1990s.

For Pilot Captain Bryan Healey, who flew the CV 580 for 34 years, the instruments were delicate passengers in need of special attention:

“The aircraft has operated in the Canadian Arctic and Archipelago out of Inuvik, Frobisher Bay (Iqaluit) and Resolute Bay on many sorties, on ice identification, mapping and behaviour and was a major contributor to the success of the Canadian Ice Service.  For these trips, we have operated in temperatures as cold as -52 C (and high as +45 elsewhere in the world), a bit of a challenge for a CV580 at times not to mention crew and equipment.  In the early years in the Arctic we had electric blankets on certain pieces of equipment so it wouldn’t take more than 4 hours of warm up before flying because the aircraft was often -40 or less inside after cold soaking outside.” [February 2014, correspondence]

Photo: Each piece of equipment had a weight label iin order to create a precise audit of cargo weight for each mission.

Photo: Each piece of equipment had a weight label to create a precise audit of cargo weight and balance of the aircraft for each mission.

Captain Healey also recalls danger for the flight crew working with the early high power C-band transmitter (used to extend the range and quality of the radar imagery):

“Every once in a while this thing would send a lightning bolt
(literally) from the high power conductors to the cage in the rack. We’d get thunder and all, and you could hear it in the cockpit. Of course the back end crew would have the hell scared out of them particularly the first time it happened. Of course there were so many blown IC’s [integrated circuits] and capacitors when this happened the radar was broken and we’d have to go back and land for repair, which was a problem if it happened early in the flight because we’d be over landing weight with the fuel load. Every once in a while Chuck Livingston (the designer of this thing) would have his hands in there and this thing would let go and “Pow”, 50 thousand volts would flash across to the cage. I don’t know how he never got electrocuted. The unit was subsequently retired by Chuck, I’m not sure if it was because of his fear it would blown up the whole radar or it just didn’t prove particularly beneficial to the operation.”

Healey characterizes the CV 580 as a “phenomenal war horse of science and adversity. I use the word adversity with passion because having flown this airplane for 34 years, I know the veracity of this word as it applies to C-GRSC, its’ crew and all the science and people behind it.” [February 2014 Correspondence]

Photo: The heart of the aircraft – one of two Synthetic Aperature Radar (SAR) antennas designed by Chuck Livingston and made by COMDEV, Cambridge, Ontario

Photo: The heart of the aircraft – one of two Synthetic Aperature Radar (SAR) antennas designed by Chuck Livingston and made by COMDEV, Cambridge, Ontario with Dr. Livingstone as Scientific Authority.

In developing the RADARSAT 2, scientists and engineers drew heavily from the CV 580 experience. All of these social and material lessons are now buried deep inside instruments far from the grasp of museum curators. The CV 580 is the last earthly bridge to that history. Frank Carsey, a long-time CCRS user from the Jet Propulsion Lab at Caltech wrote: “Engineers and scientists worked hard, scrabbled for funds, flew out of uncomfortable distant sites, dealt with balky electronics and yet delivered good, insightful science. The CV 580 connects us to those roots.” [Correspondence, March 2014]

References:

Doris H. Jelly, Canada: 25 years in Space, 1988.

Gerard McGrath & Louis Sebert (Eds). Mapping a Northern Land: The Survey of Canada, 1947-1994. McGill-Queen’s University Press, 1999

Gordon Shepherd & Agnes Kruchio, Canada’s Fifty Years in Space: The COSPAR Anniversary, 2008